26 research outputs found

    Editorial: Deep Learning in Aging Neuroscience

    Get PDF
    MINECO/FEDER TEC2015-64718-R RTI2018-098913-B-100 PGC2018-098813-B-C32General Secretariat for Universities, Research and Technology of the Junta de Andalucia under FEDER Andalucia project A-TIC-117-UGR1

    An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works

    Get PDF
    Epilepsy is a disorder of the brain denoted by frequent seizures. The symptoms of seizure include confusion, abnormal staring, and rapid, sudden, and uncontrollable hand movements. Epileptic seizure detection methods involve neurological exams, blood tests, neuropsychological tests, and neuroimaging modalities. Among these, neuroimaging modalities have received considerable attention from specialist physicians. One method to facilitate the accurate and fast diagnosis of epileptic seizures is to employ computer-aided diagnosis systems (CADS) based on deep learning (DL) and neuroimaging modalities. This paper has studied a comprehensive overview of DL methods employed for epileptic seizures detection and prediction using neuroimaging modalities. First, DLbased CADS for epileptic seizures detection and prediction using neuroimaging modalities are discussed. Also, descriptions of various datasets, preprocessing algorithms, and DL models which have been used for epileptic seizures detection and prediction have been included. Then, research on rehabilitation tools has been presented, which contains brain-computer interface (BCI), cloud computing, internet of things (IoT), hardware implementation of DL techniques on field-programmable gate array (FPGA), etc. In the discussion section, a comparison has been carried out between research on epileptic seizure detection and prediction. The challenges in epileptic seizures detection and prediction using neuroimaging modalities and DL models have been described. In addition, possible directions for future works in this field, specifically for solving challenges in datasets, DL, rehabilitation, and hardware models, have been proposed. The final section is dedicated to the conclusion which summarizes the significant findings of the paper

    A hypothesis-driven method based on machine learning for neuroimaging data analysis

    Get PDF
    There remains an open question about the usefulness and the interpretation of machine learning (ML) approaches for discrimination of spatial patterns of brain images between samples or activation states. In the last few decades, these approaches have limited their operation to feature extraction and linear classification tasks for between-group inference. In this context, statistical inference is assessed by randomly permuting image labels or by the use of random effect models that consider between-subject variability. These multivariate ML-based statistical pipelines, whilst potentially more effective for detecting activations than hypotheses-driven methods, have lost their mathematical elegance, ease of interpretation, and spatial localization of the ubiquitous General linear Model (GLM). Recently, the estimation of the conventional GLM parameters has been demonstrated to be connected to an univariate classification task when the design matrix in the GLM is expressed as a binary indicator matrix. In this paper we explore the complete connection between the univariate GLM and ML-based regressions. To this purpose we derive a refined statistical test with the GLM based on the parameters obtained by a linear Support Vector Regression (SVR) in the inverse problem (SVR-iGLM). Subsequently, random field theory (RFT) is employed for assessing statistical significance following a conventional GLM benchmark. Experimental results demonstrate how parameter estimations derived from each model (mainly GLM and SVR) result in different experimental design estimates that are significantly related to the predefined functional task. Moreover, using real data from a multisite initiative the proposed ML-based inference demonstrates statistical power and the control of false positives, outperforming the regular GLM.MCIN/AEIFEDER ``Una manera de hacer Europa" RTI2018-098913-B100Junta de AndaluciaEuropean Commission CV20-45250 A-TIC-080-UGR18 B-TIC586-UGR20 P20-00525research project ACACIA US-1264994European CommissionJunta de Andalucia (Consejeria de Economia, Conocimiento, Empresas y Universidad

    Spatial component analysis of MRI data for Alzheimer's disease diagnosis: a Bayesian network approach

    Get PDF
    This work presents a spatial-component (SC) based approach to aid the diagnosis of Alzheimer's disease (AD) using magnetic resonance images. In this approach, the whole brain image is subdivided in regions or spatial components, and a Bayesian network is used to model the dependencies between affected regions of AD. The structure of relations between affected regions allows to detect neurodegeneration with an estimated performance of 88% on more than 400 subjects and predict neurodegeneration with 80% accuracy, supporting the conclusion that modeling the dependencies between components increases the recognition of different patterns of brain degeneration in AD.This work was partly supported by the MICINN under the TEC2012-34306 project and the ConsejerĂ­a de InnovaciĂłn, Ciencia y Empresa (Junta de Andaluca, Spain) under the Excellence Projects P09-TIC-4530 and P11-TIC-7103

    Atlas-based classification algorithms for identification of informative brain regions in fMRI data

    Get PDF
    Multi-voxel pattern analysis (MVPA) has been successfully applied to neuroimaging data due to its larger sensitivity compared to univariate traditional techniques. Although a Searchlight strategy that locally sweeps all voxels in the brain is the most extended approach to assign functional value to different regions of the brain, this method does not offer information about the directionality of the results and it does not allow studying the combined patterns of more distant voxels. In the current study, we examined two different alternatives to searchlight. First, an atlas- based local averaging (ABLA, Schrouff et al., 2013a) method, which computes the relevance of each region of an atlas from the weights obtained by a whole-brain analysis. Second, a Multiple-Kernel Learning (MKL, Rakotomamonjy et al., 2008) approach, which combines different brain regions from an atlas to build a classification model. We evaluated their performance in two different scenarios where differential neural activity between conditions was large vs. small, and employed nine different atlases to assess the influence of diverse brain parcellations. Results show that all methods are able to localize informative regions when differences were large, demonstrating stability in the identification of regions across atlases. Moreover, the sign of the weights reported by these methods provides the sensitivity of multivariate approaches and the directionality of univariate methods. However, in the second context only ABLA localizes informative regions, which indicates that MKL leads to a lower performance when differences between conditions are small. Future studies could improve their results by employing machine learning algorithms to compute individual atlases fit to the brain organization of each participant.Spanish Ministry of Science and Innovation through grant PSI2016-78236-PSpanish Ministry of Economy and Competitiveness through grant BES-2014-06960

    A Spherical Brain Mapping of MR Images for the Detection of Alzheimer's Disease

    Get PDF
    Magnetic Resonance Imaging (MRI) is of fundamental importance in neuroscience, providing good contrast and resolution, as well as not being considered invasive. Despite the development of newer techniques involving radiopharmaceuticals, it is still a recommended tool in Alzheimer’s Disease (AD) neurological practice to assess neurodegeneration, and recent research suggests that it could reveal changes in the brain even before the symptomatology appears. In this paper we propose a method that performs a Spherical Brain Mapping, using different measures to project the three-dimensional MR brain images onto two-dimensional maps revealing statistical characteristics of the tissue. The resulting maps could be assessed visually, but also perform a significant feature reduction that will allow further supervised or unsupervised processing, reducing the computational load while maintaining a large amount of the original information. We have tested our methodology against a MRI database comprising 180 AD affected patients and 180 normal controls, where some of the mappings have revealed as an optimum strategy for the automatic processing and characterization of AD patterns, achieving up to a 90.9% of accuracy, as well as significantly reducing the computational load. Additionally, our maps allow the visual analysis and interpretation of the images, which can be of great help in the diagnosis of this and other types of dementia.This work was partly supported by the MICINN under the TEC2008-02113 and TEC2012-34306 projects and the Consejerıa de Econom´ıa, Innovacion, Ciencia y Empleo (Junta de Andalucıa, Spain) under the Excellence Projects P09-TIC-4530 and P11-TIC-7103, as well as the “Programa de fortalecimiento de las capacidades de I+D+I en las Universidades 2014-2015”, cofunded by the European Regional Development Fund (ERDF) under Project FC14-SAF-3

    Regions of interest computed by SVM wrapped method for Alzheimer’s disease examination from segmented MRI

    Get PDF
    Accurate identification of the most relevant brain regions linked to Alzheimer’s disease (AD) is crucial in order to improve diagnosis techniques and to better understand this neurodegenerative process. For this purpose, statistical classification is suitable. In this work, a novel method based on support vector machine recursive feature elimination (SVM-RFE) is proposed to be applied on segmented brain MRI for detecting the most discriminant AD regions of interest (ROIs). The analyses are performed both on gray and white matter tissues, achieving up to 100% accuracy after classification and outperforming the results obtained by the standard t-test feature selection. The present method, applied on different subject sets, permits automatically determining high-resolution areas surrounding the hippocampal area without needing to divide the brain images according to any common template.This work was partly supported by the MICINN under the TEC2012-34306 project and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Projects P09-TIC-4530 and P11-TIC-7103. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI; National Institutes of Health Grant U01 AG024904).This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation

    Enhancing multimodal patterns in neuroimaging by siamese neural networks with self-attention mechanism

    Get PDF
    The combination of different sources of information is currently one of the most relevant aspects in the diagnostic process of several diseases. In the field of neurological disorders, different imaging modalities providing structural and functional information are frequently available. Those modalities are usually analyzed separately, although a joint of the features extracted from both sources can improve the classification performance of Computer-Aided Diagnosis (CAD) tools. Previous studies have computed independent models from each individual modality and combined them in a subsequent stage, which is not an optimum solution. In this work, we propose a method based on the principles of siamese neural networks to fuse information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). This framework quantifies the similarities between both modalities and relates them with the diagnostic label during the training process. The resulting latent space at the output of this network is then entered into an attention module in order to evaluate the relevance of each brain region at different stages of the development of Alzheimer's disease. The excellent results obtained and the high flexibility of the method proposed allow fusing more than two modalities, leading to a scalable methodology that can be used in a wide range of contexts.Projects PGC2018- 098813-B-C32 and RTI2018-098913-B100 (Spanish “Ministerio de Ciencia, Innovación y Universidades”)UMA20-FEDERJA-086, A-TIC-080- UGR18 and P20 00525 (Consejería de economía y conocimiento, Junta de Andalucía)European Regional Development Funds (ERDF)Spanish “Ministerio de Universidades” through Margarita-Salas gran

    A Machine Learning Approach to Reveal the NeuroPhenotypes of Autisms

    Get PDF
    This work was partly supported by the MINECO Under the TEC2015-64718-R Project, the Salvador de Madariaga Mobility Grants 2017 and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103. The study was conducted in association with the National Institute for Health Research Collaborations for Leadership in Applied Health Research and Care (NIHR CLAHRC) East of England (EoE). The Project was supported by the UK Medical Research Council (Grant No. GO 400061) and European Autism Interventions — a Multicentre Study for Developing New Medications (EU-AIMS); EU-AIMS has received support from the Innovative Medicines Initiative Joint Undertaking Under Grant Agreement No. 115300, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in-kind contribution. During the period of this work, M-CL was supported by the OBrien Scholars Program in the Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health (CAMH) and The Hospital for Sick Children, Toronto, the Academic Scholar Award from the Department of Psychiatry, University of Toronto, the Slaight Family Child and Youth Mental Health Innovation Fund, CAMH Foundation, and the Ontario Brain Institute via the Province of Ontario Neurodevelopmental Disorders (POND) Network; MVL was supported by the British Academy, Jesus College Cambridge, Wellcome Trust, and an ERC Starting Grant (ERC-2017-STG; 755816); SB-C was supported by the Autism Research Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health, UK.Although much research has been undertaken, the spatial patterns, developmental course, and sexual dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in investigating differences between the sexes in autism is the small sample sizes of available imaging datasets with mixed sex. Thus, the majority of the investigations have involved male samples, with females somewhat overlooked. This paper deploys machine learning on partial least squares feature extraction to reveal differences in regional brain structure between individuals with autism and typically developing participants. A four-class classification problem (sex and condition) is specified, with theoretical restrictions based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions were imposed on the classifier complexity and feature space dimension to assure generalizable results from the training set to test samples. Accuracies above 80% on gray and white matter tissues estimated from voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning male and female adults with and without autism (N=120, n=30/group). The proposed learning machine revealed how autism is modulated by biological sex using a low-dimensional feature space extracted from VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions of the “extreme male brain” theory of autism, in sexual dimorphic areas.This work was partly supported by the MINECO Under the TEC2015-64718-R Project, the Salvador de Madariaga Mobility Grants 2017 and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103The Project was supported by the UK Medical Research Council (Grant No. GO 400061) and European Autism Interventions — a Multicentre Study for Developing New Medications (EU-AIMS)EU-AIMS has received support from the Innovative Medicines Initiative Joint Undertaking Under Grant Agreement No. 115300MVL was supported by the British Academy, Jesus College Cambridge, Wellcome Trust, and an ERC Starting Grant (ERC-2017-STG; 755816

    Short-term Prediction of MCI to AD conversion based on Longitudinal MRI analysis and neuropsychological tests

    Get PDF
    Nowadays, 35 million people worldwide su↵er from some form of dementia. Given the increase in life expectancy it is estimated that in 2035 this number will grow to 115 million. Alzheimer’s disease is the most common cause of dementia and it is of great importance diagnose it at an early stage. This is the main goal of this work, the de- velopment of a new automatic method to predict the mild cognitive im- pairment (MCI) patients who will develop Alzheimer’s disease within one year or, conversely, its impairment will remain stable. This technique will analyze data from both magnetic resonance imaging and neuropsycholog- ical tests by utilizing a t-test for feature selection, maximum-uncertainty linear discriminant analysis (MLDA) for classification and leave-one-out cross validation (LOOCV) for evaluating the performance of the meth- ods, which achieved a classification accuracy of 73.95%, with a sensitivity of 72.14% and a specificity of 73.77%.MICINN under the TEC2012-34306 projectConsejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-710
    corecore